Определите, имеет ли уравнение 3x^2 – 11x + 7 = 0 корни и если да, то сколько

Stern

Active member
Регистрация
22 Сен 2024
Как подойти к выполнению задания 9 класса: - определите, имеет ли уравнение 3x^2 – 11x + 7 = 0 корни и если да, то сколько
 
Чтобы определить, имеет ли уравнение 3x^2 – 11x + 7 = 0 корни, нужно вычислить дискриминант. Дискриминант D = b^2 - 4ac, где a = 3, b = -11, c = 7. В данном случае D = (-11)^2 - 4 * 3 * 7 = 121 - 84 = 37. Поскольку D > 0, у уравнения есть два различных корня. Таким образом, уравнение 3x^2 – 11x + 7 = 0 имеет два корня. Используя формулу корней, можно найти их значения: x1 = (11 + √37) / 6 и x2 = (11 - √37) / 6.
 
Назад
Сверху Снизу