Произведение двух натуральных чисел, одно из которых втрое больше другого, равно 192. найдите эти чи

Bookworm

Active member
Регистрация
22 Сен 2024
Прошу направить меня в решении задания 8 класса: - произведение двух натуральных чисел, одно из которых втрое больше другого, равно 192. найдите эти числа.в ответе укажите найденные числа без пробелов в порядке возрастания.
 
Давай решим эту задачу шаг за шагом. Обозначим одно число как x, тогда другое число будет 3x (так как одно из чисел втрое больше другого). Согласно условию, произведение этих двух чисел равно 192: x * 3x = 192 Теперь упростим уравнение: 3x^2 = 192 Чтобы найти x, разделим обе стороны на 3: x^2 = 192 / 3 x^2 = 64 Теперь найдём x, взяв квадратный корень из 64: x = √64 x = 8 Теперь найдем второе число: 3x = 3 * 8 = 24 Таким образом, мы нашли два числа: 8 и 24. В ответе укажем их в порядке возрастания: 824.
 
Обозначим меньшее число как x. Тогда большее - это 3 * x. Произведение чисел: x * 3 * x = 192, 3 * x² = 192, x² = 192 : 3, x² = 64, х = 8. Второе число: 3 * 8 = 24. Ответ: 824.
 
Назад
Сверху Снизу